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Abstract 
This study investigates the role of fading economic opportunity in two significant trends faced by 

working-age adults in the United States: worsening mortality (particularly from drug overdoses) 

and rising rates of application to the Social Security Disability Insurance (SSDI) and Supplemental 

Security Insurance (SSI) programs. Specifically, we examine the relationship between commuting-

zone-level exposure to automation—which has led to reductions in labor-market opportunities in 

historically important sectors such as manufacturing—and county-level mortality and SSI/SSDI 

application rates for 18–65-year-olds. Using exogenous variation in automation (as measured by 

the penetration of industrial robots per 1,000 workers) to support causal inference, we find that 

increases in automation over the period 1993–2007 led to substantive increases in drug overdose 

mortality for both men and women, particularly in manufacturing counties. The largest impacts 

were for 30–44 and 45–54-year-old men living in manufacturing counties, for whom we also find 

significant increases in mortality from all causes and suicide. We also find strong effects of 

automation on SSDI and SSI applications, driven by applications that were ultimately denied. 

Collectively, the average increase in automation exposure can account for 12% of the rise in drug 

overdose mortality between 1993 and 2007, and 22% and 12% of the rise in SSI and SSDI 

applications, respectively, between 2000 and 2007. We also find meaningful heterogeneity in the 

relationship between automation and drug overdose mortality: counties with higher levels of social 

capital and higher shares of college graduates experienced fewer drug overdose deaths for similar 

levels of exposure to automation, as did counties in states with more generous Medicaid programs. 

Counties in states with lower rates of opioid prescriptions also experienced larger increases in 

mortality from automation. 
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Introduction 
  Mortality from drug overdoses among working-age Americans has been rising 

dramatically since the 1990s (Woolf and Schoomaker 2019). Applications for both Supplemental 

Security Disability Insurance (SSDI) and Supplemental Security Income (SSI) have also risen over 

the same period (Autor and Duggan 2006). Each of these trends has its own drivers, with rising 

opioid prescriptions postulated as the dominant force behind rising drug overdose deaths (Alpert 

et al. 2019; Currie and Schwandt 2020) and changes in screening practices and rising benefit values 

thought to explain the growth in disability insurance applications (Autor and Duggan 2006). 

Standard (short-run) economic measures, such as unemployment rates, appear to be only 

minimally correlated with drug overdose mortality (Currie, Jin, and Schnell 2018; Hollingsworth, 

Ruhm, and Simon 2017), although they are strongly correlated with disability application rates 

(Maestas, Mullen, and Strand 2015). 

 Gradually evolving structural changes in the economy—particularly those affecting 

economic opportunities among individuals who do not have a college education—may play an 

important, complementary role in driving the rise in both drug overdose mortality and disability 

application rates (Case and Deaton 2017; Cherlin 2014; Coile and Duggan 2019), as well as 

broader trends in health behaviors and outcomes more generally (O'Brien, Venkataramani, and 

Tsai 2017; O’Brien et al. 2020; Venkataramani et al. 2016; Venkataramani, Daza, and Emanuel 

2020). In particular, the role of fading labor market opportunities in manufacturing, a sector that 

historically served as a path to the middle class, has attracted increased attention. A handful of 

studies have demonstrated strong links between declining employment opportunities in 

manufacturing, due to increased exposure to foreign trade or local plant closures, and drug 

overdose mortality (Adda and Fawaz 2020; Autor, Dorn, and Hanson 2019; Pierce and Schott 

2020; Venkataramani et al. 2020).  

 Automation is a critical structural force that has reshaped the American economy. Since 

the 1980s, increased adoption of industrial robots has displaced workers once employed to carry 

out routine tasks (Acemoglu and Restrepo 2020; Autor and Salomons 2018). Acemoglu and 

Restrepo (2020) estimate that adoption of robots has displaced 420,000–750,000 jobs during the 
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1990s and 2000s, with the bulk of the losses occurring in manufacturing. They find meaningful 

declines in worker wages as a result of automation, as well.  

 The substantial decline in economic opportunities attributable to automation is borne 

primarily by workers without a four-year college education, the same group that has faced rising 

mortality and disability rates. This overlap suggests a causal link between automation, drug 

overdose, and disability insurance application rates. However, these links have not yet been 

examined in the literature. With the adoption of industrial robots projected to increase two- to 

fourfold in the coming decade (Acemoglu and Restrepo 2020)—a trend that may be further 

exacerbated by responses to the ongoing Covid-19 pandemic (Chernoff and Warman 2020)—

understanding the potential consequences of automation for mortality and disability outcomes is 

critical for policymakers seeking to address these twin health and fiscal challenges. Identifying 

heterogeneity in these relationships is also critical: understanding what (if any) factors mitigate 

adverse consequences of continued automation on health and disability can help guide policy. 

 We address both of these questions in this paper. First, we use newly available measures 

of automation—namely, the penetration of industrial robots across U.S. commuting zones between 

1993 and 2007—to examine impacts of automation on mortality and SSI/SSDI applications. 

Specifically, we apply the shift-share instrumental variable strategy used by Acemoglu and 

Restrepo (2020), who created a plausibly exogenous measure of robot penetration by combining 

information on existing employment shares in different industries in each commuting zone with 

data on the trajectory of robot adoption in each of those industries from a set of European countries. 

This method reduces potential bias from omitted factors that may lead to both greater robot 

adoption and poorer health and disability outcomes. 

Combining this measure with restricted access death certificate data for 1990–2010 and 

SSI and SSDI applications and determinations for 2000–2007, we find that increases in automation 

led to substantive increases in drug overdose mortality, particularly in manufacturing counties. 

The largest impacts are for 30–44- and 45–54-year-old men living in counties with high 

concentrations of manufacturing workers (“manufacturing counties”), for whom we also find 

significant increases in all-cause and suicide mortality. Impacts for women were generally smaller. 

We also find that automation led to significant increases in SSDI and SSI applications, driven by 

applications that were ultimately denied. Collectively, the results suggest the average increase in 

robot penetration across commuting zones (about 2 robots per 1,000 workers over 1993–2007) can 
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account for 12% of the rise in drug overdose mortality over the 1990s and 2000s and 12% and 

22% of the rise in SSDI and SSI applications, respectively, between 2000 and 2007. 

Second, we investigate heterogeneity in the relationship between automation, mortality, 

and disability. We estimate how the impacts of automation vary by state and county-level 

characteristics that have been identified in the literature as fostering resilience against hard times. 

Focusing on working-age men as an illustrative case, we find that the impacts of automation on 

drug overdose mortality were greatly attenuated in counties with higher social capital and college 

graduation rates, and in counties in states with more generous Medicaid programs. Interestingly, 

we also find that the largest impacts of automation on drug overdose mortality were centered in 

states that had triplicate prescription programs in place, which greatly limited the marketing of 

prescription opioid medications from the late 1990s onwards (Alpert et al. 2019). We find little 

evidence of heterogeneity in automation impacts by any of these measures for SSI and SSDI 

applications.  

This paper proceeds as follows. We first describe the data sources used in the study. We 

then discuss our empirical strategy. We then present findings from our analysis of the impacts of 

automation on mortality and SSI/SSDI applications and determinations and examine heterogeneity 

in these relationships. The final section discusses the policy and scientific implications of our 

findings.  

 

Data  
 We use three core data sources for our analyses. Data for our main exposure, commuting-

zone level exposure to automation, were obtained from Acemoglu and Restrepo (2020). The 

measure, which captures the predicted increase in industrial robots per 1,000 workers over the 

period 1993–2007, is constructed using 1970 commuting-zone-level data on employment shares 

across different industries combined with data on the growth in industrial robots in each of these 

industries for five European countries (Denmark, Finland, France, Italy, and Sweden).1 The use of 

data from these countries, who adopted industrial robots sooner than the United States did, instead 

of U.S. data, allows Acemoglu and Restrepo (2020) to limit bias from endogenous commuting-

                                                      
1 Acemoglu and Restrepo (2020) use 1970 values to address potential bias from mean reversion in industrial 
employment shares in the 1980s. 
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zone labor demand factors that may have jointly influenced automation and our outcomes of 

interest (e.g., worsening health leading both to firms adoption of automation technologies and 

increased working-age mortality) (Currie, Jin, and Schnell 2018; Krueger 2017). This type of 

measure is known as a “shift-share instrument” in the econometrics literature (Goldsmith-

Pinkham, Sorkin, and Swift, forthcoming). Figure 1 plots the spatial distribution of the automation 

measure by quartiles. The mean (median) commuting zone experienced an increase in industrial 

robots of 2.03 (1.53) per 1,000 workers. Automation was greatest in the industrial Midwest, the 

South, and parts of the Northeast and Southwest. 

  Age-adjusted drug overdose mortality rates per 100,000 working-age individuals (18–65-

year-olds) were constructed from restricted-access death certificate data obtained from the U.S. 

National Center for Health Statistics (National Center for Health Statistics, 2018) and annual age-

sex-specific population estimates from the U.S. Census Bureau. To match the automation data, we 

compute changes in mortality rates per 100,000 working-age individuals between 1993 and 2007.  

Importantly, although our exposure is at the commuting-zone level, the spatial level that 

best reflects changes in local labor markets, we compute county-specific mortality rates. We do so 

to best capture the population at risk of being affected by the exposure (Venkataramani et al. 2020). 

For most states, death certificate data do not include information on occupation, and information 

on educational attainment is incomplete. These challenges make it difficult to track impacts of 

structural labor market changes on mortality, as the at-risk population is not known. However, the 

use of county-level data provide a way around this issue. Specifically, through linkages to county-

level census data, it allows assessment based on where individuals whose employment 

opportunities are most likely to be affected by automation—namely, manufacturing workers—

tend to live.   

We use sex-specific mortality rates throughout our analyses. We also compute sex-specific 

mortality rates for the 18–29, 30–44, 45–54, and 55–65-year-old age groups, to assess 

heterogeneity by age. While our primary focus is on drug overdose mortality, we also examine a 

broader set of causes of death, including all-cause mortality, suicide mortality, homicide mortality, 

mortality from unintentional injuries (e.g., automobile or firearm accidents), and mortality from 

organ system diseases (e.g., cardiovascular and respiratory diseases),2 that have tended to receive 

                                                      
2 We do not examine alcohol-attributable mortality, due to difficulties in reconciling ICD-9 and ICD-10 cause of death 
codes for 1993 and 2007 with the broad definition of alcohol mortality currently being used in the literature. 
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less attention in “deaths of despair” literature, but for which midlife mortality rates have also risen 

(Woolf and Schoomaker 2019). Appendix Table 1 provides the ICD-9 and ICD-10 codes used to 

compute mortality rates. 

Figure 2 plots the spatial distribution of changes in working-age drug overdose mortality 

rates by quartile between 1993 and 2007 (rates at baseline, i.e., in 1993, are provided in Appendix 

Table 2). This pattern is more diffuse than that for automation, although there is some overlap in 

key areas, such as the industrial Midwest and the South. 

 Finally, data on SSI and SSDI applications and determinations were obtained from the U.S. 

Social Security Administration (SSA). At this writing, we have access to SSA Form 831 data from 

2000 onwards. To match the automation data from Acemoglu and Restrepo (2020), we restrict our 

focus to changes in applications (and determinations) per 1,000 working-age population for the 

period 2000–2007. Doing so helps eliminate bias from right censoring in the analysis of 

determinations, as decisions may come years after initial application. While we again use county-

level data, we note that the construction of these data from underlying zip code–level aggregates 

may make it more difficult to identify the at-risk population, given overlap in zip and county 

boundaries. However, this may be less of an issue with SSI and SSDI applications, given that these 

outcomes are less rare than mortality, providing greater statistical power in our analyses.  

Figure 3 plots the spatial distribution of changes in disability application rates (SSI and 

SSDI combined) by quartile (application rates at baseline, i.e, in 2000, are provided in Appendix 

Table 3). These spatial patterns follow closely with those observed for changes in drug overdose 

mortality rates. 

 

Research Strategy 
Main Analyses 

To estimate the impact of automation on working-age mortality rates and SSI and SSDI 

applications and determinations, we estimate versions of the following first differences model:3 

                                                      
3 For mortality, the specification we use corresponds to the long-difference model used by Acemoglu and Restrepo 
(2020). While the relevant analyses are not shown here, our substantive findings are also robust to using Acemoglu 
and Restrepo’s “stacked first-differences” model (which incorporates changes over two times periods, 1993–2000 and 
2000–2007, with a period-fixed effect to capture secular trends across these periods). For disability, we use data for 
2000–2007, based on the SSI/SSDI application and determination data we have at present.  
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∆𝑌𝑌𝑖𝑖,𝑗𝑗,𝑟𝑟,𝑡𝑡1−𝑡𝑡0 =  𝛼𝛼1 × ∆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑟𝑟,𝑡𝑡1−𝑡𝑡0 +  𝜷𝜷 × 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑗𝑗,𝑟𝑟,𝑡𝑡0 +  𝜃𝜃𝑟𝑟 +  𝑒𝑒𝑖𝑖,𝑗𝑗,𝑟𝑟,𝑡𝑡  

 

where i indexes the county, j indexes the commuting zone, and t1 and t0 index the end line (2010 

for mortality, 2007 for disability applications) and baseline (1990 for mortality, and 2000 for 

disability applications), respectively. ∆𝑌𝑌𝑖𝑖,𝑗𝑗,𝑟𝑟,𝑡𝑡1−𝑡𝑡0  represents the change in the outcome of interest 

(endline – baseline) at the county level and ∆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑟𝑟,𝑡𝑡1−𝑡𝑡0 represents the change in the 

number of industrial robots per 1,000 workers at the commuting-zone level.  

𝛼𝛼1, which captures the association between exposure to automation and mortality and 

disability outcomes, is our parameter of interest. This parameter captures both direct and indirect 

effects: direct effects of automation-led job and benefit loss and indirect effects of structural 

changes in the economy, which might affect workers seeking employment opportunities in sectors 

affected by automation (Venkataramani et al. 2020) and still-employed workers who might be 

affected by falling wages and opportunities for occupational mobility (Elser et al. 2019), as well 

as shifting social factors (e.g., changes to marriage markets, destruction of social capital) that 

might affect health and disability outcomes in still more distant ways (Cherlin 2014; Wilson 1996). 

Our research design and data limitations make it difficult to distinguish between these different 

pathways, and we flag this distinction as an important area for future research. 

 Because shift-share instrumental variables strategies are susceptible to bias if the baseline 

characteristics (here, commuting-zone industrial shares in 1970) used to create the instrument are 

correlated with other baseline characteristics whose subsequent trends may also affect the 

outcomes of interest (e.g., educational attainment) (Goldsmith-Pinkham, Sorkin, and Swift, 

forthcoming), we follow Acemoglu and Restrepo (2020)’s preferred specification and adjust the 

rich set of baseline characteristics (denoted by the vector 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑗𝑗,𝑟𝑟,𝑡𝑡0), including 

commuting-zone demographics (age distribution, race/ethnicity population shares) and 

socioeconomic characteristics (shares completing high school and college education, share 

employed in manufacturing, share employed in routine occupations, and exposure to foreign 

trade). We also include fixed effects for the nine census divisions (denoted by 𝜃𝜃𝑟𝑟), to account for 

regional patterns in the evolution of automation and our main outcomes (Figures 1-3). 

 We estimate the model separately by sex, by cause of death, and by disability program and 

determination status. We then estimate models for mortality outcomes separately by sex, cause, 
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and age groups. Because manufacturing areas were most affected by automation, we also estimate 

all of these models separately for the counties in the highest quartile of the share of workers 

employed in manufacturing (“manufacturing counties,” plotted in the map in Appendix Figure 1). 

Doing so allows us to best capture the at-risk population in analyses of relatively rare outcomes 

like mortality. In all analyses, we cluster standard errors at the state level, to account for potential 

geographic correlation in exposure and outcomes, and weight by appropriate (sex-age group) 

population size.  

    

Robustness Checks 

Even with the use of a theoretically motivated instrumental variable strategy and the 

inclusion of a rich set of covariates, we test the sensitivity of our substantive findings in several 

robustness checks. First, we reestimate our models for 18–65-year-olds after removing outlier 

commuting zones—those whose adoption of industrial robots distinctly outpaced the rest of the 

United States. Second, we assess preexisting trends. Focusing specifically on drug overdose 

mortality, we examine whether automation between 1993 and 2007 predicts differences in 

mortality rates between 1980 and 1990. Third, we examine whether selective migration may 

explain a substantive portion of our findings, by estimating whether exposure to automation led to 

changes in the county-level share of individuals with a college education. Acemoglu and Restrepo 

(2020) find that the bulk of the effects of automation on labor market outcomes are unlikely to be 

explained by migration; migration in general appears to play a minor role in other studies 

examining the link between economic opportunity and health (Autor, Dorn, and Hanson 2019; 

Schwandt and von Wachter 2020; Venkataramani et al. 2020). 

 

Analysis of Heterogeneity 

To examine heterogeneity in the effects of automation on mortality rates and disability 

insurance application rates, we estimate the versions of the above first-differences model, 

including interactions in which we interact all of the right-hand variables with county- and state-

level factors that have been posited to foster resilience to short- and long-run economic shocks. 

The theoretical motivation for examining both local and state-level factors follows from the 

existing literature on the importance of social conditions and policymaking at these levels on health 

outcomes (Karas Montez 2017; Karas Montez, Hayward, and Zajacova 2019; Monnat et al. 2019). 
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Specifically, we examine whether automation impacts vary by county-level measures of social 

capital (Rupasingha and Goetz 2008; Rupasingha, Goetz, and Freshwater 2006), educational 

attainment (the share of adults completing a bachelor’s degree or higher, from the Social Explorer), 

and state-level measures of welfare program generosity (new indices measuring generosity of 

Medicaid and TANF benefits, obtained from Fox et al. (2020)).  

We run separate models for each of these variables. Wherever possible, we restrict our 

measures of program heterogeneity to the baseline period or earlier (1990 for the mortality rate 

variables and 2000 for the disability application variables), but data limitations do not always allow 

us to find true baseline values.4 For this reason, and given that interactions estimated using these 

types of models may be confounded by other unobserved interactions, we consider this part of our 

analysis a descriptive, hypothesis-generating exercise.  

Finally, given the important role of prescription opioid supply in driving drug overdose 

deaths, we also examined whether automation impacts varied by drug supply, using historical state 

triplicate programs (which prevented widespread marketing of these drugs in the 1990s and 2000s) 

as our measure of the supply environment (Alpert et al. 2019). Because only five states—

California, Idaho, Illinois, New York, and Texas—had triplicate programs in place, we consider 

this analysis, too, to be descriptive and hypothesis generating. 

 

Results 
Graphical Evidence 

 Figures 4 and 5 plot the relationship between the automation measure and changes in 

county-level drug overdose mortality rates by sex (per 100,000 18–65-year-olds) over the period 

1990–2010 and combined SSI and SSDI applications (per 1,000 18–65-year-olds) over the period 

2000–2007, respectively. The unadjusted relationships in these figures are consistent with the 

econometric evidence we provide in the next subsection. 

Across all counties, we see a positive relationship between automation and change in drug 

overdose deaths, with the association being larger for men and for manufacturing counties. We 

similarly see a positive relationship between automation and SSI/SSDI applications, with the 

                                                      
4 Data on social capital and the share of college graduates are available for 1990. Data on per capita county government 
expenditures are available for 2000, as are the indices of social program generosity. 
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similar slopes for the overall sample and manufacturing counties likely reflecting the difficulty of 

assigning applications to manufacturing vs. non-manufacturing counties in the aggregation from 

zip codes to counties (see the discussion in the “Data” section). 

 

Econometric Evidence  

Table 1 provides estimates for models examining changes in mortality outcomes between 

1990 and 2010 among men and women ages 18–65. Across all counties, we find a statistically 

significant impact of automation on changes in drug overdose mortality. The coefficient estimate 

implies that the (weighted) average increase in robots per 1,000 workers over the study period 

(2.03 for the full sample, which is also roughly equivalent to the interdecile range for this variable) 

led to an increase in drug overdose mortality rates of 1.76 deaths per 100,000. This increase is 

equivalent to 12.5% of the average increase in drug overdose mortality rates across counties over 

the study period (14.1 deaths per 100,000).  

Coefficient estimates for men in the full county sample for other all-cause mortality and 

other diseases are small and not statistically significant. However, when focusing solely on 

manufacturing counties, we find both larger impacts on drug overdose mortality and evidence of 

statistically significant impacts on suicide and homicide mortality among men, as well. Estimates 

for drug deaths in this sample from the same average increase in industrial workers implies that 

automation may account for 20% of the increase in drug overdose mortality among working-age 

men living in manufacturing counties (an increase of 3.9 deaths per 100,000 divided by the 

weighted sample mean of 19.0 deaths per 100,000). The estimates for suicide mortality imply a 

much larger relative contribution from automation of nearly 67%.  

Among working-age women in the full sample of counties, we find small and generally 

insignificant effects of automation on mortality. We do, however, find impacts within 

manufacturing counties, with a 2 robot per 1,000 worker increase in the automation measure 

resulting in an increase of 1.2 drug overdose deaths per 100,000. This implied effect represents 

10% of the mean increase in drug overdose mortality rates among women in manufacturing 

counties. 

Stratification by age groups (Figures 6 and 7) reveals additional heterogeneity in the 

impacts of automation, again with the bulk of effects driven by manufacturing counties. For 

example, among manufacturing counties, men in all age groups experienced increases in drug 
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overdose mortality, with these effects detectable even in the full sample of counties. Middle-aged 

men (30–44-year-olds and 45–54-year-olds) in manufacturing counties also saw large increases in 

all-cause mortality, driven predominantly by drug and suicide mortality. Among women in 

manufacturing counties, increases in drug overdose mortality were noted among 18–29 and 30–

44-year-olds, with the latter group experiencing increases in all-cause mortality and mortality from 

cancer. Consistent with prior work showing a countercyclical relationship between mortality from 

unintentional injuries and economic downturns, 18–29-year-old men and women in manufacturing 

counties experienced declines in mortality from injuries with increasing automation. 

Results examining impacts on changes in SSI and SSDI applications and determinations 

per 1,000 working age population over 2000–2007 are presented in Table 2. For both SSI and 

SSDI, we find statistically significant impacts of commuting-zone-level automation on county-

level application rates. Applying the average increase in automation (about 1.3 robots per 1,000 

workers over the period 2000–2007) suggests an increase of 0.37 SSI applications and 0.32 SSDI 

applications per 1,000 working-age population. These estimates are equivalent to 22% and 12% 

of the rise in applications for each program, respectively. Estimates for the sample of 

manufacturing counties are similar in magnitude, again likely owing to the difficulty of assigning 

applications and determinations to manufacturing vs. non-manufacturing counties in the context 

of aggregation from zip codes to counties.  

Consistent with research on business-cycle fluctuations and disability applications, we find 

that all of the effect of automation on disability applications is driven by applications that were 

ultimately denied. The null findings for successful disability applications implies that automation 

did not lead to increases in disability rolls. In Appendix Table 4, we provide additional evidence 

for this contention, showing that the stock of working age individuals on disability (per 1,000 

working-age population) did not increase more in areas exposed to greater rates of automation. 

 

Robustness Checks  

The substantive findings for mortality estimates were robust to excluding commuting zones 

with outlying rates of industrial robot adoption (Appendix Table 5, first panel). Automation 

between 1993 and 2007 was either not associated with, or negatively associated with, lagged 

changes in mortality rates (over 1981–1992), which suggests that, if anything, our results may be 

biased downward by preexisting trends or mean reversion (Appendix Table 5, second panel). 
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Finally, we do not find any evidence of selective migration, at least on the margin of education: 

we found no association between automation and county-level changes in the share of college 

graduates between 1990 and 2000 (analysis available upon request). 

 

Heterogeneity in the Impacts of Automation 

 Estimates of the heterogeneity in the impacts of automation on drug overdose mortality 

among working-age men are provided in Table 3. Each set of rows represents marginal effect 

estimates of the impacts of the automation measure on changes in drug overdose mortality among 

men ages 18–65 at the 25th and 75th percentile of the heterogeneity variable listed in the first 

column.  

 We find that areas with the lowest quartile levels of social capital, shares of college 

graduates, and state Medicaid generosity experienced large increases in drug overdose mortality, 

while areas in the highest quartiles of these variables saw more muted increases (if any). In 

additional analyses (not shown here), we see a similar (if not starker) pattern in manufacturing 

counties. 

 The impacts of automation were greatest in counties in states with triplicate programs, 

which limited the marketing and prescription of opioid pharmaceuticals. Figure 8 (an unadjusted 

plot) illustrates this result most clearly, with the slope between automation and changes in drug 

overdose mortality rates steeper in counties in these states, while counties in nontriplicate states 

(where opioid prescription was more widespread) had higher average increases in drug overdose 

mortality throughout. The corresponding adjusted regression coefficient suggests a nonsignificant 

marginal increase in drug deaths of 0.41 deaths per 100,000 18–65-year-old men in nontriplicate 

states (for a one-unit change in the automation measure, i.e., one robot per 1,000 workers), as 

compared to a change of 3.08 deaths per 100,000 in the same population with the same marginal 

increase in automation among the triplicate states (p-value on the interaction, 0.042).5 

 In contrast to the results for mortality, we do not find any meaningful heterogeneity in the 

impacts of automation on SSI and SSDI application rates. That is, regardless of the level of the 

                                                      
5 Of note, the results in Table 3 hold even when we restrict the sample to nontriplicate states. That is, the positive and 
significant impacts of automation in areas with lower social capital, lower socioeconomic outcomes, and less generous 
social welfare programs—and the null impacts in better-performing areas on these margins—held in this restricted 
sample, as well.  
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county or state social or policy attribute, the point estimates are generally similar to those presented 

in Table 2. 

 

Discussion  
Technological change has led to increases in the automation of routine tasks, a trend that 

is expected to continue in coming decades. Since the 1990s, increasing adoption of labor-

displacing automation technologies in U.S. labor markets has coincided with rising rates of 

mortality (mainly from drug overdoses) and disability insurance program applications, particularly 

among individuals with lower levels of education. Our study suggests a causal link between these 

trends, with (average) increases in automation accounting for 12% of the rise in drug overdose 

mortality between 1990 and 2010, and 22% and 12% of the rise in SSI and SSDI applications 

(respectively) between 2000 and 2007. We also find important impacts of automation on suicide 

rates for men and show that the rise in disability insurance applications attributable to automation 

has been driven fully by rejected applications.  

Our findings have a number of implications for policymakers and researchers. First, they 

support findings from an emerging body of research showing that fading economic opportunity, 

whether through automation or increased exposure to international trade, may have significant 

negative consequences for population health outcomes and administration of and participation in 

disability insurance programs. Second, the mortality consequences of fading opportunity driven 

by automation, while most dominantly seen in drug overdose deaths among men, have been 

heterogeneous by gender, age, and cause of death. For example, while the largest impacts were for 

30–44 and 45–54-year-old men living in manufacturing counties (for whom we also find 

significant increases in mortality from all causes and suicide), we also find important impacts on 

drug overdose, cancer, and all cause mortality for younger women. Collectively, these findings 

suggest that the “Deaths of Despair” narrative may actually be more nuanced than previously 

suspected. Third, the finding that the impacts on SSI and SSDI applications were driven purely by 

denied applications is consistent both with findings regarding the effects of short-term economic 

downturns on disability applications (Maestas, Mullen, and Strand 2015) and more recent work 

suggesting that an increasing rate of marginal disability applications may itself serve as a sign of 

rising despair in the face of structural economic change (Coile and Duggan 2019; O’Brien 2019).      
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Public policy may be able to counteract these negative trends. For drug overdose mortality 

rates, we find that areas with higher levels of social and socioeconomic capital and more generous 

public welfare policies experienced little (if any) increase in drug overdose deaths when faced with 

the same levels of automation as other places. We do not find a similar heterogeneity for the 

relationship between automation and disability insurance applications, although this result may be 

due to the limited set of policy levers we examined in this work. Finally, our findings that 

automation-led increases in drug overdose areas were largest in areas where the growth in 

prescription opioid availability was restricted for ex ante policy reasons suggests that the dynamic 

between opioid supply and demand in explaining drug overdose deaths is perhaps more complex 

than previously assumed.  
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Figures and Tables 

 
Figure 1. Exposure to automation, 1993–2007 

 
 
Notes: Figure maps quartiles of commuting-zone-level exposure to automation, as measured by change in the number 
of industrial robots per 1,000 workers, 1993–2007. Map shows county borders. Data were obtained from Acemoglu 
and Restrepo (2020).  
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Figure 2. Changes in drug overdose mortality among working age adults, 1990–2010 
 

 

 
Notes: Figure maps quartiles of county-level changes in drug overdose mortality rates per 100,000 18–65-year-olds 
by sex between 1990 and 2010. Mortality data were obtained from restricted-access death certificate data from the 
National Center for Health Statistics (2018). 
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Figure 3. Changes in SSI/SSDI applications per 1,000 working age adults, 2000–2007 
 

 
 
Notes: Figure maps quartiles of county-level changes in SSI and SSDI applications per 1,000 18–65-year-olds between 
2000 and 2007. Disability insurance program application data were obtained from restricted-access death certificate 
data from the U.S. Social Security Administration, Form 831 files. 
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Figure 4. Unadjusted relationships, exposure to automation and drug overdose mortality 
 

 
Notes: Binscatter plots of the unadjusted relationship between automation (the change in the number of robots per 
1,000 workers between 1993 and 2007) and changes in drug overdose mortality rates per 100,000 18–65-year-old men 
and women 1990–2010 for the all U.S. counties (panel A) and counties in the highest quartile of the 1990 share of 
workers employed in manufacturing (manufacturing counties, panel B). 
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Figure 5. Unadjusted relationships, exposure to automation and SSI and SSDI applications 
 

 
Notes: Binscatter plots of the unadjusted relationship between automation (the change in the number of robots per 
1,000 workers between 2000 and 2007) and changes in SSI and SSDI applications (combined) per 1,000 18–65-year-
old men and women 2000–2007 for all U.S. counties (panel A) and counties in the highest quartile of the 1990 share 
of workers employed in manufacturing (manufacturing counties, panel B). 
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Figure 6. Impacts of automation on mortality among 18–29 and 30–44-year-olds 
 

 
Notes: Estimates from a first differences model regressing changes in mortality rates (per 100,000) for each listed age-
gender group, 1990–2010, on automation, expressed as the change in the number of industrial robots per 1,000 workers 
between 1993 and 2007. Each point (and 95% CI) represents estimates from a separate regression, with blue denoting 
estimates for all counties (n=3,107) and red denoting estimates for manufacturing counties (n=777). All models adjust 
for a rich set of 1990 commuting-zone demographic (age distribution, race/ethnicity population shares) and 
socioeconomic characteristics (shares completing high school and college education, share employed in 
manufacturing, share employed in routine occupations, and exposure to foreign trade), as well as census-division fixed 
effects.  
  



Opportunity, Mortality, and Disability 

   
 

25 

Figure 7. Impacts of automation on mortality among 45–54 and 55–64-year-olds 

 
Notes: Estimates from a first differences model regressing changes in mortality rates per 100,000 for each listed age-
gender group, 1990–2010, on automation, expressed as the change in the number of industrial robots per 1,000 workers 
between 1993 and 2007. Each point (and 95% CI) represents estimates from a separate regression, with blue denoting 
estimates for all counties (n=3,107) and red denoting estimates for manufacturing counties (n=777). All models adjust 
for a rich set of 1990 commuting-zone demographic (age distribution, race/ethnicity population shares) and 
socioeconomic characteristics (shares completing high school and college education, share employed in 
manufacturing, share employed in routine occupations, and exposure to foreign trade), as well as census-division fixed 
effects.  
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Figure 8. Relationship between automation and mortality in states with and without 
triplicate pharmaceutical programs 

 

 
Notes: Binscatter plots of the unadjusted relationship between automation (the change in the number of robots per 
1,000 workers between 1993 and 2007) and changes in drug overdose mortality rates per 100,000 18–65-year-old men 
for counties in states with and without triplicate pharmaceutical programs. The five states with triplicate programs are 
California, Idaho, Illinois, New York, and Texas. 
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Table 1. Model estimates, impacts of automation on working-age mortality, by gender and 
cause of death 

 Men Women 
 All counties Manufacturing 

counties All counties Manufacturing 
counties 

All causes 0.79  
(2.19) 

 

3.19  
(2.14) 

 

0.72  
(1.02) 

 

1.13  
(1.06) 

 
Drug overdose 0.88**  

(0.38) 
 

1.93**  
(0.74) 

 

0.36  
(0.22) 

 

0.60*  
(0.30) 

 
Suicide 0.08  

(0.16) 
 

0.83***  
(0.24) 

 

0.04  
(0.09) 

 

0.24  
(0.16) 

 
Homicide 0.92  

(0.64) 
 

0.55**  
(0.25) 

 

–0.01  
(0.09) 

 

0.13  
(0.11) 

 
Cardiovascular –0.17  

(0.68) 
 

–1.05  
(1.24) 

 

0.25 
 (0.32) 

 

–1.43**  
(0.71) 

 
Respiratory 
illnesses 

–0.16  
(0.16) 

 

–0.04  
(0.29) 

 

0.001  
(0.13) 

 

0.002  
(0.24) 

 
Cancer –1.16*  

(0.64) 
 

–1.11  
(0.99) 

 

0.11 
(0.38) 

 

0.58  
(0.80) 

 
Unintentional 
injury (w/o drug 
overdose) 

–0.13 
(0.32) 

–0.36 
(0.63) 

–0.09 
(0.11) 

–0.68** 
(0.25) 

N, counties 
(clusters) 3,107 (48) 777 (34) 3,107 (48) 777 (34) 

 
Notes: Estimates from a first differences model regressing changes in mortality rates for 18–65-year-old men and 
women (per 100,000) 1990–2010 on automation, expressed as the change in the number of industrial robots per 1,000 
workers between 1993 and 2007. Each cell reports a coefficient estimate (standard error) from a separate regression 
model (with the last row of the table reporting the number of observations and number of state clusters in parentheses). 
All models adjust for a rich set of 1990 commuting-zone demographic (age distribution, race/ethnicity population 
shares) and socioeconomic characteristics (shares completing high school and college education, share employed in 
manufacturing, share employed in routine occupations, and exposure to foreign trade), as well as census-division fixed 
effects. ***  p<0.01, ** p<0.05, * p<0.10. 
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Table 2. Model estimates, impacts of automation on SSI and SSDI applications and 
determinations 

 All counties Manufacturing 
counties 

SSI   
Applications 0.29** 

(0.13) 
2,893 

0.25*** 
(0.09) 
768 

Succeeded 0.02 
(0.04) 
2,551 

0.004 
(0.05) 
751 

Denied 0.27*** 
(0.08) 
2,733 

0.26*** 
(0.07) 
763 

SSDI   
Applications 0.16*** 

(0.06) 
2,932 

0.17*** 
(0.06) 
769 

Succeeded –0.04 
(0.04) 
2,664 

–0.06 
(0.05) 
756 

Denied 0.21*** 
(0.04) 
2,761 

0.25*** 
(0.07) 
765 

 
Notes: Estimates from a first differences model regressing changes in disability program application and determination 
rates per 1,000 18–65-year-old persons, 2000–2007, on automation, expressed as the change in the number of 
industrial robots per 1,000 workers over the same period. Each cell reports a coefficient estimate (standard error) from 
a separate regression model, with the sample size provided below. These sample sizes are smaller than for our 
mortality models because data for some counties with small application counts were suppressed for privacy purposes. 
All models adjust for a rich set of commuting-zone demographic (age distribution, race/ethnicity population shares) 
and socioeconomic characteristics (shares completing high school and college education, share employed in 
manufacturing, share employed in routine occupations, and exposure to foreign trade) for the year 2000, as well as 
census-division fixed effects. ***  p<0.01, ** p<0.05, * p<0.10. 
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Table 3. Heterogeneity in the impacts of automation on drug overdose mortality rates 
among working age men 

 
 p25 p75 
Social Capital 1.93*** 

(0.54) 
–1.0* 
(0.61) 

College Graduate 
Share 

2.87*** 
(0.56) 

1.54*** 
(0.45) 

Medicaid Generosity 
Index 

1.75** 
(0.86) 

0.34 
(0.41) 

TANF Generosity 
Index 

0.72 
(0.56) 

1.06 
(0.88) 

N, counties (clusters)                 3,107 (48) 

 
Notes: Estimates from a first differences model regressing changes in mortality rates for 18–65-year-old men and 
women (per 100,000) 1990–2010 on automation, expressed as the change in the number of industrial robots per 1,000 
workers between 1993 and 2007. Unlike the models in Table 1, these models include the full set of interactions with 
each of the county- and state-specific socioeconomic and policy factors listed in the left-hand column. Each set of 
rows reports the marginal effects (standard error) obtained from a separate regression model, with margins evaluated 
at the 25th and 75th percentile of the national distribution of the heterogeneity variable of interest. As before, all 
models adjust for a rich set of commuting-zone demographic (age distribution, race/ethnicity population shares) and 
socioeconomic characteristics (shares completing high school and college education, share employed in 
manufacturing, share employed in routine occupations, and exposure to foreign trade) for the year 2000, as well as 
census-division fixed effects, along with the interactions between all of these covariates and the heterogeneity 
variables of interest. ***  p<0.01, ** p<0.05, * p<0.10. 
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Appendix  

 
Appendix Figure 1. Identifying manufacturing counties 

 

  
 

Notes: Map plots quartiles of county shares of workers ages 16 and above employed in the manufacturing industry 
as of 1990. Data were obtained from Social Explorer. 
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Appendix Table 1. ICD-9 and ICD-10 codes for causes of death 
 

Cause of death ICD-9 ICD-10 
Suicide 950–959 X60–X84, Y87.0 
Homicide 960–978 X85–X99, Y0–Y9, Y35, 

Y87.1, Y89.0  
Drug overdose 850–858, 950.0–950.5, 962.0, 

980.0–980.5 
X40–X44, X60–X64, X85, 
Y10–Y14 

Cardiovascular 390–459 I0–199 
Cancer 140–208 C0–C97 
Respiratory illness 34.0, 460–465, 470–478, 

490–519 
J0–J7, J30–J47, J60–J98 

Unintentional injury (without 
drug overdose) 

800–849, 860–869, 880–929 V0–V99, W0–W99, X0–X39, 
X45–X59, Y85–Y86 

 
Notes: ICD-9 and ICD-10 codes used to identify specific causes of death in our analysis. ICD-9 codes are used in all 
registered U.S. death certificates between 1979 and 1998 and ICD-10 codes have been used for all registered death 
certificates since 1999.
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Appendix Table 2. Baseline mortality rates per 100,000 18–65-year-olds, 1990 

 Men Women 
 All counties Manufacturing 

counties All counties Manufacturing 
counties 

All causes 483.32 512.34 259.41 278.24 

Drug overdose 5.72 3.33 3.22 2.61 

Suicide 23.25 24.98 5.90 5.67 

Homicide 19.88 12.99 4.61 3.90 

Cardiovascular 147.08 176.36 65.65 77.34 

Respiratory 
illnesses 14.62 17.09 10.76 12.01 

Cancer 120.37 135.69 103.96 108.10 

Unintentional 
injury (w/o drug 
overdose) 

46.51 59.41 14.31 18.67 

N (counties) 3,108 778 3,108 778 
 

Notes: Table presents baseline mortality rates per 100,000 18–65-year-old men and women for 1990 (specifically, the average for 1989–1991). 
Mortality data were obtained from restricted-access death certificate data from the National Center for Health Statistics (2018). 
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Appendix Table 3. Baseline disability program application rates per 1,000 working-age 
population, 2000 

  All counties Manufacturing 
counties 

SSI applications 7.67 
(2,915) 

8.51 
(768) 

SSI successes 2.98 
(2,616) 

3.05 
(754) 

SSI denials 4.64 
(2,778) 

5.33 
(764) 

SSDI applications 6.41 
(2,954) 

8.32 
(770) 

SSDI successes 2.77 
(2,715) 

3.43 
(759) 

SSDI denials 3.65 
(2,812) 

4.90 
(766) 

 
Notes: Table presents baseline SSI and SSDI application and determination rates per 100,000 18–65-year-
old men and women for the year. Data were obtained from SSA Form 831 files. Sample sizes are smaller 
than for our mortality data, because data for some counties with small application counts were suppressed 
for privacy purposes. 
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Appendix Table 4. Sensitivity analyses, SSI and SSDI applications 

  All counties Manufacturing 
counties 

Change in 
disabled workers 
per 1,000 
working-age 
persons 

0.004 
(0.18) 
2,791 

0.27 
(0.28) 
705 

 

Notes: Models are identical to estimates in Table 2, except here the dependent variable is 2000–2007 change in the 
number of disabled workers per 1,000 working-age (18–64) persons. Data for this new dependent variable were 
obtained from the U.S. Social Security Administration (annual county-level data on the number of OASDI 
beneficiaries, each year). The mean change in the number of disabled persons per capita was 14.8 (s.d. 7.7). These 
data do not include counties in the states of Alaska, Hawaii, Maryland, Missouri, Nevada, and Virginia, and another 
26 counties were excluded due to missing data for the year 2007. See Table 2 for further details on the estimation 
model. ***  p<0.01, ** p<0.05, * p<0.10. 
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Appendix Table 5. Sensitivity analyses, mortality 
 

  Remove most heavily automated 
areas 

Preexisting trends in mortality  

 Cause of death Men Women Men Women 
All counties All causes 3.13 

(3.50) 
 

0.93 
(1.72) 

 

–4.64** 
(1.79) 

–0.56 
(1.16) 

Drug overdose 1.31** 
(0.63) 

 

0.70* 
(0.42) 

 

–0.37 
(0.29) 

–0.07 
(0.10) 

Suicide 0.25 
(0.34) 

 

0.16 
(0.15) 

 

–0.67*** 
(0.20) 

–0.36*** 
(0.11) 

Homicide 2.24** 
(0.93) 

 

0.20 
(0.12) 

 

–0.21 
(0.47) 

–0.08 
(0.07) 

Cardiovascular –0.46 
(1.20) 

 

–0.35 
(0.57) 

 

–2.34*** 
(0.85) 

0.04 
(0.38) 

Respiratory 
illnesses 

0.15 
(0.29) 

 

0.46** 
(0.23) 

 

–0.10 
(0.16) 

–0.06 
(0.10) 

Cancer –1.86 
(1.25) 

 

–0.52 
(0.81) 

 

–0.28 
(0.54) 

–0.39 
(0.42) 

Unintentional injury 
(w/o drug overdose) 

0.39 
(0.47) 

–0.21 
(0.29) 

–0.42 
(0.43) 

–0.42*** 
(0.14) 

N, counties 
(clusters) 

3,082 (48) 3,102 (48) 

Manufacturing 
counties 

All causes 4.47 
(3.61) 

 

1.23 
(2.40) 

 

–2.61 
(2.22) 

–0.60 
(1.33) 

Drug overdose 2.17** 
(0.87) 

 

0.45 
(0.53) 

 

0.12 
(0.15) 

–0.19*** 
(0.07) 

Suicide 0.91** 
(0.70) 

 

0.07 
(0.21) 

 

–0.89* 
(0.45) 

–0.32* 
(0.17) 

Homicide 1.26*** 
(0.42) 

 

0.03 
(0.27) 

 

0.16 
(0.28) 

–0.15 
(0.13) 

Cardiovascular 0.34 
(2.41) 

 

–2.62 
(1.65) 

 

–3.69* 
(1.95) 

–0.27 
(0.69) 

Respiratory 
illnesses 

0.33 
(0.59) 

 

0.62 
(0.76) 

 

0.14 
(0.30) 

–0.10 
(0.15) 

Cancer 0.13 
(1.90) 

 

–0.16 
(1.62) 

 

–0.07 
(0.78) 

0.10 
(0.73) 
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Unintentional injury 
(w/o drug overdose) 

–1.05 
(1.19) 

0.01 
(0.52) 

1.32** 
(0.63) 

–0.13 
(0.20) 

N, counties 
(clusters) 

765 (34) 777 (34) 

 
Notes: Models in the first panel are identical to estimates in Table 1, except here we exclude outlier commuting zones 
(areas where the increase in the number of robots per 1,000 workers is greater than 4; first two columns). In the second 
panel, we estimate the same models, except the dependent variables reflect the change in mortality rates between 1981 
and 1991. ***  p<0.01, ** p<0.05, * p<0.10. 
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